
Improved Searhing for Spatial Features in Spatio-Temporal Data�Kurt Stokinger and Kesheng WuLawrene Berkeley National Laboratory, Berkeley, CA 94720, USASeptember 27, 2004AbstratSienti� data analysis often requires mining large databases or data warehouses to �nd features inspae. One important task is to �nd regions of interest suh as stellar objets in astrophysis or amefronts in ombustion studies. Typially, this task is performed in two steps. The �rst step (searhing)identi�es reords satisfying ertain onditions spei�ed by the user and outputs a set of ells. The seondstep (region-growing) groups these ells into onneted regions. Most ommon approahes essentiallyperform a brute-fore san for the searhing step. A number of indexing shemes have been proposed tospeed up the searhing step. Beause they usually also slow down the region-growing step, these shemeshave not redued the overall time.In this artile, we propose an approah based on ompressed bitmap indies. Our approah speedsup not only the searhing step, but also the region-growing step. In the literature, the time omplexityof the region-growing step is demonstrated to be linear in the number of reords in the dataset. In ourtests, we show that the response time of our region-growing algorithm is linear in the number of reordslose to the surfae of the regions of interest whih is a small subset of all ells.�The authors thank Ekow Otoo, Doron Rotem, and Heinz Stokinger for their onstrutive omments during the writingof this artile. This work was supported by the Diretor, OÆe of Siene, OÆe of Laboratory Poliy and InfrastrutureManagement, of the U.S. Department of Energy under Contrat No. DE-AC03-76SF00098. This researh used resoures of theNational Energy Researh Sienti� Computing Center, whih is supported by the OÆe of Siene of the U.S. Department ofEnergy.
1

1 IntrodutionMany sienti� datasets are spatio-temporal in nature beause they measure physial quantities in spae andtime. For example, a simulation of the ombustion proess omputes the onentrations of all hemial speiesalong with pressure and temperature [3, 6℄. A satellite image of the surfae of the Earth [9, 10℄ measuresquantities suh as temperature, wind speed, humidity and so on. One ommon operation in mining thesedatasets is to derive some quantities on regions of interest, e.g., the total heat output from an ignition kernelin the ombustion simulation, and the average rain fall of a state over a spei�ed period of time. To supportthis operation one needs to eÆiently identify regions of interest.In this paper, we onentrate on datasets with regular disretization of spae, suh as the Diret NumerialSimulations of ombustion on uniform 2D or 3D meshes[3, 6℄, and the raster images of the surfae of theEarth from satellite observation [9, 10℄. In these ases, the spae is disretized into small ells, and thequantities on eah ell are omputed or measured at some time values. All data from one time value isommonly known as a time step. To simplify the disussion, we only disuss the regions of interest arede�ned by users with range onditions suh as \pressure > 10; 000 and temperature > 1; 000."After the user spei�es the onditions, the proess of identifying the regions of interest is usually dividedinto two steps, the searhing step to �nd the ells satisfying the onditions, and the region-growing step togroup the ells into onneted regions. This region-growing step is often alled the onneted omponentlabeling in image proessing literature [1, 4℄. If the onditions for regions of interest are simple, suh as\pressure < 20; 000", the boundaries of the regions are the ontour lines omputed by the iso-ontouringalgorithms for \pressure = 20; 000" [2, 8℄. For visualization purposes, region-growing algorithms produethe same output as iso-ontouring algorithms. Beause of this, region-growing algorithms are sometimesompared with iso-ontouring algorithms. However, one important di�erene is that region-growing algo-rithms produe the ells inside the regions but the iso-ontouring algorithms only identify the ells on theboundaries.One approah to identify regions of interest is to partition the ells aording to spatial oordinates,suh as Quad-tree and R-Tree [5℄. These indexing shemes are only eÆient for relatively low dimensional

data, say the total number of attributes inluding the spatial dimensions is less than 10. If the number ofattributes is more or if only a small number of attributes are involved in the onditions, these indies arenot as eÆient as the brute-fore san. Worse yet, these indexing shemes usually separate ells that areneighbors in spae. Beause of this, they slow down the region-growing step. For example, in a reent studyby Shi and Jaja [9℄, the time spent by their region-growing step is signi�antly longer than the time spent byomparable onneted omponent labeling algorithms [1, 4℄. For these reasons, the most suessful approahuses brute-fore san for the searhing step. Beause this allows the neighboring ells to be kept together,eÆient algorithms for onnet omponent labeling an be used for the region-growing step. Clearly, if wean use an indexing sheme that keep the neighboring ells together, we should redue the time used by thesearhing step without inreasing the time used by the region-growing step. This would redue the totaltime.We propose to use bitmap indies for the searhing step beause they do not reorder the ells [7, 11, 14℄.Our implementation of the bitmap indies also uses ompression sheme based the run-length enoding. Inthis ase, the searhing step produes a ompressed bitmap to represent the ells satisfying the onditions.This ompressed bitmap an be easily onverted to bloks of onneted ells. Working with these bloks toperform the region-grow step is in fat more eÆient than using ells diretly. Previously, we have presentedsome evidene that the bitmap-based approah works well for data a on 2D uniform mesh [12℄. In thispaper, we desribe a set of eÆient algorithms for region-growing in 3D. By taking full advantage of theompat output from the bitmap indies, our algorithms are orders of magnitudes faster than the generialgorithm required when the searhing step produes ells in arbitrary order. As in the 2D ase [12℄, weobserve that our region-growing algorithm sales linearly in the number of bloks produed by the searhingstep. Sine the number of bloks is less than the number of ells on the boundaries of the regions of interest,our algorithm sales better than the best iso-ontouring algorithms [2, 8℄. The best of onneted omponentlabeling algorithms sale linearly in the total number of ells [1, 4℄, our region-growing algorithm sales muhbetter sine the number of bloks are muh less than the total number of ells.

bitmap indexRID I =0 =1 =2 =31 0 1 0 0 02 1 0 1 0 03 3 0 0 0 14 2 0 0 1 05 3 0 0 0 16 3 0 0 0 17 1 0 1 0 08 3 0 0 0 1b1 b2 b3 b4Figure 1: A sample bitmap index where RID is the reord ID and I is the integer attribute with values inthe range of 0 to 3.2 Bitmap-Based ApproahFor read-only or read-mostly data, the bitmap index is one of the most eÆient indexing shemes for speedingup range queries [7, 14℄. For an attribute with distint values, the basi bitmap index generates bitmapseah with N bits, where N is the number of reords (ells) in the dataset. Eah bit in a bitmap is set to 1if the attribute in the reord is of a spei� value, otherwise 0. For example, the integer attribute I shownin Figure 1 an be one of four distint values, 0, 1, 2, and 3, and the orresponding bitmap index has fourbitmaps. Sine the value in reord 5 is 3, the �fth bit in b4 is set to 1 and the same bits in other bitmapsare 0. In short, 4 bitmaps are required to enode 4 distint attribute values.Using a bitmap index, answering a range query, suh as I < 2, requires some bitwise logial operationson the bitmaps. Sine bitwise logial operations are well-supported by omputer hardware, we an expetto answer range queries eÆiently with bitmap indies. With a bitmap index for eah attribute, onditionsinvolving multiple attributes, suh as \I < 2 and J < 3", an also be eÆiently answered by ombining thepartial solutions omputed using indies on attributes I and J.One major onern about the bitmap index is that for attributes with a large number of distint values,the indies require too muh spae to store. Reently, it has been shown that even in the worst ase, thebitmap indies an be ompressed to a size that is omparable with a typial B-tree index. The time requiredto answer a range query using a ompressed bitmap index is in fat optimal. In the worst ase, the responsetime is proportional to the number of hits of the query [14℄.In our implementation of the bitmap index for spatio-temporal data, we preserve the spatial order of the

ells. This avoids reordering of the raw data and redues the time required for building the bitmap indies.Another bene�t is that the ompressed bitmap produed as the result of the searhing step an be easilyturned into bloks of onneted ells. In [9℄ the authors report that a majority of the ompute time is spentin grouping the ells identi�ed by the searhing step into horizontal line segments. The time required in ourapproah to onvert a ompressed bitmap into line segments and other bloks is usually below the aurayof the ommon timing funtions of about 0.01 seonds.On a 3D regular mesh, the ells an be identi�ed by three oordinates along three spatial dimensions,x, y, and z. A ommon way of representing the ells during omputation or measurement is to order theells aording to their z-oordinates �rst. For ells with the same z-oordinates, order them aording toy-oordinates. For ells with the same z- and y-oordinates, order them aording to x-oordinates. This isusually alled the raster san order. Sine most of the eÆient bitmap ompression shemes are based onrun-length enoding, the result produed by the searhing step naturally represents onseutive ells thateither all satisfy the user spei�ed onditions or not. These onseutive ells an be easily mapped to bloksalong the x-axis. There are three types of bloks (see Figure 2):1. Line segments, where all ells have the same y and z oordinates.2. Whole lines, where all ells have the same z oordinates, onseutive y oordinates and all possiblevalues in the x-axis.3. Whole planes, where ells have onseutive z oordinates and have all possible x and y oordinates inthe given range of z oordinates.To simplify the disussion, we desribe all algorithms as if there are only line segments. In the atualimplementations all three types are onsidered.Both experiments and analyses have shown that the time spent in the searhing step is proportional tothe number of bloks identi�ed, and the size of the result produed by the searhing step is also proportionalto the number of bloks [14, 12, 13℄. The most eÆient iso-ontouring algorithms are shown to have anexeution time that is proportional to the number of ells touhing the ontour lines [2, 8℄. Sine eah blokhas at least one point touhing the boundaries of the regions, the searhing time using bitmap indies is not

Figure 2: a) Cell with grid lines of the mesh. b) Blok type I and II without grid lines.)-d) Blok type IIIwithout grid lines.worse than linear in the number of ells touhing the ontour lines. On 2D data, we have observed thatthe region-growing time is proportional to the number of bloks [12℄. Next we will show the same is truefor 3D data. If both steps have linear omplexity, then the whole proess has linear time omplexity. Thisdemonstrates that our bitmap-based approah to identify regions of interest is theoretially optimal.3 Region-Growing AlgorithmsEah blok in the 3D spae is haraterized by a pair of points for eah dimension. Eah pair spei�es the lowerand upper bound in a given dimension (bounding box). For instane, blok[7℄ in Figure 3 is haraterizedby the points < 0; 1 >< 3; 4 >< 1; 2 >, where < 0; 1 > refers to the oordinates < xmin; xmax >, < 3; 4 >refers to < ymin; ymax >, and < 1; 2 > to < zmin; zmax > . In the following disussion, we take the inputfor region-growing algorithms to be a list of bloks. The output of the region-growing algorithm are lists ofonneted regions. Next, we outline algorithms for onneting bloks to form regions of interest.

3.1 Simple Region SearhThis algorithm is the most generi one and does not assume any partiular order of bloks. Note that bloksare the output of the searh step disussed in Setion 2. This algorithm is used for indexing shemes thatdo not preserve spatial ordering among the ells, for example, [9℄.The searh algorithm works as follows. The �rst blok blok[0℄ is onsidered as the �rst onneted regiononnetedRegions[0℄. Next, the algorithm loops over eah blok and heks whether it is part of an alreadyidenti�ed onneted region. If it is not part of an existing onneted region, a new region is reated. If theblok is part of a onneted region, it gets added to this one. If the blok is part of several onneted regions,these regions are merged.numberOfBloks is given from initial searh step // always greater than 0onnetedRegions = 0onnetedRegions[0℄->add(blok[0℄) // vetor of vetors with blok indies;// eah blok-vetor holds the indiesfor i = 1 to numberOfBloks-1 // of the bloks of a speifi regionmergeRegions.lear()numberOfFoundRegions = 0findMore = truefor j = 0 to onnetedRegions.size()-1for k=0 to onnetedRegions[j℄.size()-1AND (searhMore == true)if blok[i℄ onneted with onnetedRegions[j℄[k℄ thennumberOfFoundRegions++onnetedRegions[j℄->add(blok[i℄)mergeRegions->add(j)searhMore = falseif numberOfFoundRegions == 0 thenreateNewRegion(blok[i℄) // onnetedRegions->add(blok[i℄)else if numberFoundRegions > 1 thenmergeConnetedRegions in mergeRegionsFor indexing shemes that do not preserve spatial order among the ells, it is neessary to use thisalgorithm. Another possibility is to sort the bloks �rst and then use one of following algorithms.3.2 Improved Region Searh IThe improved algorithm FastRegionSearh I takes advantage of the fat that the bloks are partially sorted.Rather than searhing through all onneted regions, only a subset has to be searhed, namely those regions

that are lose to the blok. In this ase, lose means that the respetive blok is on the same plane withinthe axis of our oordinate system. See Figure 3.

Figure 3: Bloks in spae with 3 spatial dimensions. Note: For simpliity, not all bloks are indexed in this�gure.FastRegionSearh I iterates through the bloks plane-wise with respet to the z-axis. The algorithm �rstheks all the bloks on the x-y-plane for a given z-oordinate (see Figure 4 (a)). One all bloks on thisplane are searhed, the next x-y-plane gets searhed ((see Figure 4 (b) - (d)).Note that some bloks might not be onsidered as onneted on the x-y-plane for a given z-value. However,by searhing x-y-planes on a higher z-value, these bloks an get onneted. This is true for the bloks blok[8℄and blok[9℄ in Figure 3. They are only identi�ed as being onneted after blok[10℄ is proessed.Like for the simple algorithm, the �rst blok is onsidered to be the �rst onneted region. Next Fas-tRegionSearh I searhes through the bloks on the x-y-plane with z-oordinate 0 and heks for onnetedregions in the same way as the simple algorithm does. All bloks on this plane are stored in an auxil-iary data struture alled andidateRegions. This is a two-dimensional data struture. Its �rst dimension

Figure 4: Bloks of Figure 3 mapped to two spatial dimensions.holds the index of the original blok. The seond dimension holds the index of the onneted region, e.g.andidateRegions[1℄[0℄ = 7 refers to blok 7, andidateRegions[1℄[1℄ = 1 being part of onneted region 1(see Figure 3).One all bloks on the x-y-plane with the z-oordinate 0 are heked, the next plane on a higher z-oordinate is searhed. If the next blok is on a plane adjaent to the previous plane, i.e. the di�erene ofthe z-oordinate is 1, then we know that there are andidate regions that might be onneted to previousandidates regions. The �rst step is to rename all andidate regions of the previous plane to the auxiliarydata struture ativeRegions and lear andidateRegions. ativeRegions is the same two-dimensional datastruture as andidateRegions. Assume we are searhing through the x-y-plane with the z-oordinate = 1(see Figure 4 (b)). All searhed bloks on this plane are onsidered as andidate regions. On the other hand,all bloks on the previous x-y-plane with z-oordinate = 0 are onsidered as ative regions.Next, all bloks on the urrent plane are heked if they are onneted with the regions in ativeRegions.The heking for onnetion and the possible merging of onneted regions is analogous to what we disussed

for the simple algorithm.If the bloks are on a x-y-plane that is not adjaent to the previous one, i.e. the di�erene in the z-oordinate > 1, then we know that these regions are not onneted with any regions on the previous plane,e.g. blok[8℄ and blok[9℄. If the blok is the �rst on the non-adjaent x-y-plane, then a new onneted regionis reated, otherwise the blok is ompared with all the bloks on the same plane, i.e. andidateRegions.numberOfBloks is given from initial searh step // always greater than 0onnetedRegions = 0onnetedRegions[0℄->add(blok[0℄)for i = 1 to numberOfBloks-1mergeRegions.lear()numberOfFoundRegions = 0if (blok[i℄ is on the same x-y-plane) thenfindConnetions() // see belowelse if (blok[i℄ is on the adjaent x-y-plane) thenativeRegions = andidateRegionsandidateRegions.lear()findConnetions() // see belowelse if (blok[i℄ is first of non-adjaent x-y-plane) thenandidateRegions.lear()reateNewRegion(blok[i℄)findConnetions():numberOfConnetions = 0for j=0 to andidateRegions.size()-1if blok[i℄ is onneted with andidateRegions[j℄ thennumberOfFoundRegions++if (numberOfFoundRegions == 1) thenonnetedRegions[andidateRegions[j℄℄->add(blok[i℄)mergeRegions->add(j)for j=0 to ativeRegions.size()-1if blok[i℄ is onneted with ativeRegions[j℄ thennumberOfFoundRegions++if (numberOfFoundRegion == 1) thenonnetedRegions[andidateRegions[j℄℄->add(blok[i℄)mergeRegions->add(j)if (numberOfFoundRegions == 0) thenreateNewRegion(blok[i℄)else if (numberOfFoundRegions > 1) thenmergeConnetedRegions in mergeRegionsupdate region index in andidateRegions and ativeRegionsandidateRegions->add(blok[i℄)

3.3 Improved Region Searh IINext we study an even further improved algorithm alled FastRegionSearh II. The main di�erene is that wegroup the regions ativeRegions and andidateRegions into onneted regions. Reall that andidateRegionsrefers to all regions on the same plane as the new blok. By grouping them into onneted regions, not allbloks of a partiular region have to be searhed for �nding possible onneted regions. The searh anbe stopped after identifying the �rst one. However, the searh through ativeRegions involves more steps.Sine an input blok an be onneted with multiple ativeRegions, all subgroups need to be searhed.Both data strutures are one-dimensional. The �rst element holds the index of the onneted region. Theremaining elements hold the index of the original blok. Assume the z-oordinate is 4 (see Figure 4 (d)). Inthis ase the two bloks blok[8℄ and blok[9℄ of the previous plane (see Figure 4 ()) belong to the followingative region: ativeRegions[0℄[0℄ = 2 (index of onneted region), ativeRegions[0℄[1℄ = 8 (blok[8℄) andativeRegions[0℄[2℄ = 9 (blok[9℄).Due to the one-dimensional struture of ativeRegions and andidateRegions FastRegionSearh II hasanother advantage over FastRegionSearh I. Only the �rst element needs to be updated for hanging theindex of the onneted region after regions get merged.The �rst part of this algorithm is idential to FastRegionSearh I. The di�erene, however, is the methodfindConnetions that is desribed below:findConnetions():numberOfConnetions = 0for j=0 to andidateRegions.size()-1 AND searhMoreif blok[i℄ is onneted with andidateRegions[j℄ thennumberOfFoundRegions++searhMore = false // Searh stops after oneonnetedRegions[andidateRegions[j℄℄->add(blok[i℄) // onneted region is foundandidateRegions[j℄->add(blok[i℄) // in andRegions.mergeRegions->add(andidateRegions)for j=0 to ativeRegions.size()-1if blok[i℄ is onneted with ativeRegions[j℄ thennumberOfFoundRegions++ // Sine a blok an be onnetedif (numberOfFoundRegion == 1) then // with several regions, allandidateRegions[ativeRegions[j℄℄->add(blok[i℄) // onneted regions inonnetedRegions[ativeRegions[j℄℄->add(blok[i℄) // ativeRegions need to bemergeRegions->add(andidateRegions) // searhed.if (numberOfFoundRegions == 0) then

reateNewRegion(blok[i℄)else if (numberOfFoundRegions > 1) thenmergeConnetedRegions in mergeRegionsupdate region index in andidateRegions and ativeRegions3.4 Improved Region Searh IIIA further improvement to the algorithm is not to searh through all andidate regions and through allregions on the ative plane, but only through the ones in lose proximity to the blok. FastRegionSearh IIIsearhes through all onneted regions on the same y-plane and one y-plane below the blok. In addition, itsearhes through the adjaent z-plane with regions adjaent to the y-plane of the blok. Assume the blokis blok[6℄ on the x-y-plane with the z-oordinate = 1 (see Figure 5 (b)). The algorithms introdued in theprevious setions would searh through all regions of the x-y-plane with the z-oordinate = 0. However,FastRegionSearh III only searhes through the two olumns with the y-values y = yblok[7℄ and y = yblok[7℄+ 1.

Figure 5: Redued searh area for FastRegionSearh III.In order to retrieve only those bloks on a given y-axis, we introdue a new hash-based data struturewhih keeps trak of the y-values of the onneted regions. The data struture has the following format:<y-value>;<indies of onneted regions 1 to n>;<indies of bloks of region 1><indies of bloks of region 2> ...<indies of bloks of region n>

A typial example would be:<4>; <1, 2, 4>; <2, 3> <4> <8, 9, 10>The �rst olumn refers to the onneted regions with the y-value 4. This value is also the hash-value forfast lookup. The seond olumn holds the index of the onneted regions 1, 2 and 4. This means, that thebloks 2 and 3 make up region 1. Blok 4 orresponds to region 2. Finally, the bloks 8, 9 and 10 refer tothe onneted region 4. The advantage of this data struture is that the lookup for onneted regions witha given y-value is of omplexity O(1). In addition, if two onneted regions get merged, say regions 2 and4, then this an easily be indiated by updating the orresponding entries of the seond olumn. Assumingthat region 4 gets merged into region 2, the updated olumn would be <1, 2, 2>.Due to spae limitations we do not state all the details of the whole algorithm here. The main di�ereneto Regions Searh II is that rather than searhing through all andidate or ative regions, only those areheked, that are adjaent to the y-plane of the blok. For instane, if the y-value of the blok is 4, then allregions are searhed on the y-planes 3, 4 and 5.4 Experimental ResultsWe tested our algorithms on astrophysis data whih onsists of 110 million reords. We seleted threeattributes from our data set and performed one-dimensional queries with various seletivities ranging from5% to 95%. The experiments were arried out on a 2.8 GHz Intel Pentium IV with 1 GB RAM. The I/Osubsystem is a hardware RAID with two SCSI disks.Figure 6 depits the time for �nding onneted regions as a funtion of the bloks that vary between38,000 and 400,000. The proessing time for the simple algorithm takes 12 to 1,250 seonds. The algorithmFastRegionSearh I is up to a fator of 100 faster. One the other hand, FastRegionSearh II is again up toa fator of 5 faster than FastRegionSearh I or even up to fator of 500 faster than the simple algorithm.For a low number of bloks, FastRegionSearh III is slower than FastRegionSearh II. However, for a largenumber of bloks, FastRegionSearh III shows the best overall performane.Figure 7 depits the average time for the nine region searh queries shown Figure 6. For instane,

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

a) Number of input blocks for attribute x

T
im

e
[s

ec
]

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

b) Number of input blocks for attribute y

T
im

e
[s

ec
]

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

c) Number of input blocks for attribute z

T
im

e
[s

ec
]

Simple
Fast I
Fast II
Fast III

Simple
Fast I
Fast II
Fast III

Simple
Fast I
Fast II
Fast III

Figure 6: Time [in seonds℄ for �nding onneted regions as a funtion of bloks.for attribute y the average searh time for the simple algorithm is 333 seonds. For the algorithms Fas-tRegionSearh I, II and III the searh times are 5.9, 1.8 and 0.65 seonds respetively. This shows thatFastRegionSearh III signi�antly outperforms all other algorithms of a fator of 3 up to 500.5 ConlusionsIn this paper, we demonstrated that ompressed bitmap indies an be used eÆiently to speed up identifyingregions of interest. The proess of identifying regions of interest an be aomplished with a searhing stepand a region-growing step. Compressed bitmaps are well-suited for the searhing step [11, 14℄. The keyontribution of this paper is to demonstrate that the output from the searhing step an be eÆiently used

Figure 7: Average time [in seonds℄ for �nding onneted regions.for the region-growing step. Beause the output of the searhing step an be easily organized into bloksof onseutive ells, the region-growing step is observed to sale linear in the number of bloks. Sine thenumber of bloks is muh smaller than the number of ells on the boundaries of the regions of interest, andalso muh smaller than the total number of ells, our algorithm sales better than the best known onnetedomponent labeling algorithms [1, 4℄ and the iso-ontouring algorithms [2, 8℄.In the future, we plan to analyze the theoretial omplexity of the new region-growing algorithm andondut performane tests against the best known onneted omponent labeling and iso-ontouring algo-rithms.

Referenes[1℄ F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time omponent-labeling algorithm using ontour traingtehnique. Comput. Vis. Image Underst., 93(2):206{220, 2004.[2℄ P. Cignoni, C. Montani, E. Puppo, and R. Sopigno. Optimal isosurfae extration from irregularvolume data. In Volume Visualization Symposium, pages 31{38, 1996.[3℄ T. Ehekki and J. H. Chen. Diret numerial simulation of autoignition in non-homogeneous hydrogen-air mixtures, 2003. to be published in Combustion and Flame.[4℄ C. Fiorio and J. Gustedt. Two linear time union-�nd strategies for image proessing. Theor. Comput.Si., 154(2):165{181, 1996.[5℄ V. Gaede and O. G�unther. Multidimension aess methods. ACM Computing Surveys, 30(2):170{231,1998.[6℄ H. G. Im, J. H. Chen, and C. K. Law. Ignition of hydrogen/air mixing layer in turbulent ows. In 27thInternational Symposium on Combustion, The Combustion Institute, pages 1047{1056, Boulder, CO,1998.[7℄ P. O'Neil. Model 204 arhiteture and performane. In 2nd International Workshop in High PerformaneTransation Systems, pages 40{59, Asilomar, CA, 1987. Springer-Verlag.[8℄ H. W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson. Isosurfaing in span spae with utmosteÆieny (ISSUE). In IEEE Visualization `96, pages 287{294, 1996.[9℄ Q. Shi and J. F. Jaja. EÆient tehniques for range searh queries on earth siene data. In J. Kennedy,editor, Fourteenth International Conferene on Sienti� and Statistial Database Management, pages142{151, Edinburgh, Sotland, 2002. IEEE Computer Soiety.[10℄ M. Steinbah, P.-N. Tan, V. Kumar, S. Klooster, and C. Potter. Disovery of limate indies usinglustering. In Proeedings of the ninth ACM SIGKDD International Conferene on Knowledge Disoveryand Data Mining, pages 446{455, Washington, D.C., 2003. ACM Press.[11℄ K. Stokinger, K. Wu, and A. Shoshani. Strategies for proessing ad ho queries on large data ware-houses. In Proeedings of DOLAP'02, MLean, VA, 2002. ACM Press.[12℄ K. Wu, W. Koegler, J. Chen, and A. Shoshani. Using bitmap index for interative exploration of largedatasets. In Proeedings of SSDBM 2003, pages 65{74, Cambridge, MA, 2003.[13℄ K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for faster searh operations. InProeedings of SSDBM'02, pages 99{108, Edinburgh, Sotland, 2002.[14℄ K. Wu, E. J. Otoo, and A. Shoshani. On the performane of bitmap indies for high ardinalityattributes. Tehnial Report LBNL-54673, Lawrene Berkeley National Laboratory, Berkeley, CA,2004. To appear in VLDB 2004.

